Ta'lim nevrologiyasi - Educational neuroscience

Ta'lim nevrologiyasi (yoki neyro ta'lim,[1] ning tarkibiy qismi Aqliy miya va ta'lim) yangi paydo bo'lmoqda ilmiy tadqiqotchilarni birlashtiradigan soha kognitiv nevrologiya, rivojlanish kognitiv nevrologiya, ta'lim psixologiyasi, ta'lim texnologiyasi, ta'lim nazariyasi biologik jarayonlar va ta'limning o'zaro ta'sirini o'rganish uchun boshqa tegishli fanlar.[2][3][4][5] Ta'lim nevrologiyasining tadqiqotchilari ushbu tadqiqotni o'tkazadilar asabiy mexanizmlari o'qish,[4] raqamli bilish,[6] diqqat va ularning xizmatchilarining qiyinchiliklari, shu jumladan disleksiya,[7][8] diskalsuliya[9] va DEHB ular bilan bog'liq ta'lim. Ushbu sohadagi tadqiqotchilar kognitiv nevrologiya sohasidagi asosiy topilmalarni yordam berish uchun ta'lim texnologiyalari bilan bog'lashlari mumkin o'quv dasturi uchun amalga oshirish matematik ta'lim va o'qish ta'limi. Ta'lim nevrologiyasining maqsadi yaratishdir Asosiy va amaliy tadqiqotlar bu yangi disiplinlerarası hisobni taqdim etadi o'rganish va o'qitish, bu ma'lumotni xabardor qilishga qodir. Ta'lim nevrologiyasining asosiy maqsadi "miyaga asoslangan ta'lim sohasi vositachilari" dan qochib, tadqiqotchilar va o'qituvchilar o'rtasidagi to'g'ridan-to'g'ri dialog orqali ikki soha o'rtasidagi farqni bartaraf etishdir. Ushbu vositachilar "neyromitlar" va ularning taxmin qilingan vositalarini sotishdan manfaatdor.[4]

Ta'lim nevrologiyasining salohiyati kognitiv nevrologlar va o'qituvchilar tomonidan har xil darajada qo'llab-quvvatlandi. Devis[10] idrokning tibbiy modellari, "... asosan ta'lim va ta'limning keng doiralarida juda cheklangan rolga ega, chunki o'rganish bilan bog'liq qasddan qilingan holatlar miya faoliyati tomonidan tekshirilishi mumkin bo'lgan shaxslar uchun ichki emas". Pettito va Dunbar[11] boshqa tomondan, ta'lim nevrologiyasi "bugungi kunda ta'limning asosiy muammolarini hal qilish uchun eng dolzarb tahlil darajasini taqdim etadi". Xovard-Jons va Pikering[12] o'qituvchilar va o'qituvchilarning mavzu bo'yicha fikrlarini o'rganib chiqdilar va ular odatda nevrologik tadqiqotlardan ta'lim sohasida foydalanishdan g'ayratli ekanliklarini va ushbu topilmalar o'quv mazmuni emas, balki ularning o'qitish metodikasiga ta'sir qilishi mumkinligini sezdilar. Ba'zi tadqiqotchilar oraliq nuqtai nazardan qarashadi va nevrologiyadan ta'limga to'g'ridan-to'g'ri bog'liqlik "juda uzoqqa ko'prik", deb o'ylashadi,[13] ammo bu kognitiv psixologiya yoki ta'lim psixologiyasi kabi ko'prik intizomi[14] ta'lim amaliyoti uchun nevrologik ilmiy asos yaratishi mumkin. Biroq, fikrimcha, ta'lim va nevrologiya o'rtasidagi bog'liqlik hali ham o'z imkoniyatlarini to'liq ishga solmagan va uchinchi tadqiqot intizomi orqalimi yoki yangi nevrologiya tadqiqotlari paradigmalari va loyihalarini ishlab chiqish yo'li bilanmi, murojaat qilish vaqti keldi. nevrologik tadqiqotlar natijalari ta'limga amaliy jihatdan mazmunli tarzda.[2][4][5]

Yangi intizomga ehtiyoj

Ta'lim nevrologiyasining paydo bo'lishi, ilmiy tadqiqotlarni ta'lim sharoitida amalda qo'llaydigan yangi intizomga bo'lgan ehtiyojdan kelib chiqqan. "Aql, miya va ta'lim" sohasiga murojaat qilib, Kurt Fischer shunday dedi: "An'anaviy model ishlamaydi. Tadqiqotchilar uchun maktablarda ma'lumot to'plash va ushbu ma'lumotlarni va natijada olingan tadqiqot ishlarini o'qituvchilarga taqdim etish etarli emas",[15] chunki bu usul o'qituvchilar va o'quvchilarni tegishli tadqiqot usullari va savollarini shakllantirishga hissa qo'shishdan xalos qiladi.

Kognitiv psixologiya va nevrologiyani o'rganish individual insonlar va boshqa turlar atrofdagi tabiiy va ijtimoiy olamlardan foydali ma'lumotlarni olish uchun qanday rivojlanganligiga e'tibor qaratdi.[16] Aksincha, ta'lim va ayniqsa, zamonaviy rasmiy ta'lim, o'quvchilar o'zlari kutib bo'lmaydigan dunyoni tavsiflash va tushuntirishga qaratilgan. Shu tarzda, ilmiy ma'noda o'rganish va ta'limiy ma'noda o'rganish bir-birini to'ldiruvchi tushunchalar sifatida qaralishi mumkin. Bu kognitiv nevrologiya uchun ta'limni o'rganishning haqiqiy dunyo talablariga moslashish uchun yangi muammo tug'diradi. Aksincha, nevrologiya ta'lim uchun yangi muammo tug'diradi, chunki u o'quvchining hozirgi holatini, shu jumladan miya holati, genetik holati va gormonal holatini o'rganish va o'qitish bilan bog'liq bo'lishi mumkin bo'lgan yangi tavsiflarni beradi. O'qish va o'qitishning yangi o'lchovlarini, shu jumladan miya tuzilishi va faolligini ta'minlash orqali o'quv uslubi va yutuqlarining har xil turlarini ajratish mumkin. Masalan, nevrologiya tadqiqotlari allaqachon o'qishni matematikadan kontseptual tushunish orqali o'rganishdan ajratib turishi mumkin.[17]

The Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi muhim bir hisobotni nashr etdi va ta'kidladiki, "nevrologiya tadqiqot ma'lumotlari o'qituvchilarga qanday shaklda berilishi haqida tanqidiy fikr yuritish vaqti keldi, shunda u amaliyot uchun mos ravishda talqin qilinadi - qaysi tadqiqot natijalari tayyorligini aniqlaydi. amalga oshirish va qaysi biri mavjud emas. "[18]

Ularning kitobida O'rganish miyasiLondonning "Ta'limiy nevrologiya markazi" tadqiqotchilari, Blakemor va Frit ta'lim miyaning nevrologiyasiga oid ko'plab nazariyalarni vujudga keltirgan inson miyasining rivojlanish neyrofiziologiyasini bayon qildilar.[19] Ta'lim va nevrologiya o'rtasidagi bog'liqlikni qo'llab-quvvatlovchi asosiy ustunlardan biri bu miyaning o'rganish qobiliyatidir. Nevrologiya miyaning erta rivojlanishi va bu miya o'zgarishlari o'rganish jarayonlari bilan qanday bog'liq bo'lishi mumkinligi haqidagi tushunchamizni rivojlantiradi va oshiradi.

Miyaning erta rivojlanishi

Miyadagi deyarli barcha neyronlar tug'ilishdan oldin, homiladorlikning dastlabki uch oyida hosil bo'ladi va yangi tug'ilgan bolaning miyasida kattalarnikiga o'xshash neyronlar mavjud. Zarur bo'lgandan ko'ra ko'proq neyronlar hosil bo'ladi va faqat boshqa neyronlar bilan faol aloqalarni hosil qiladiganlar tirik qoladi. Tug'ilgandan keyingi birinchi yilda chaqaloq miyasi intensiv rivojlanish bosqichini boshdan kechiradi, bu davrda neyronlar o'rtasida juda ko'p sonli bog'lanishlar vujudga keladi va bu ortiqcha birikmalarning aksariyati sinaptik Azizillo bu quyidagicha. Ushbu kesish jarayoni miya hujayralari o'rtasidagi aloqalarning erta tez o'sishi kabi rivojlanish bosqichi ham muhimdir. Neyronlar orasidagi ko'p sonli bog'lanishlar hosil bo'lish jarayoni deyiladi sinaptogenez. Ko'rish va eshitish (ko'rish va eshitish qobig'i) uchun keng erta sinaptogenez mavjud. To'rt oydan 12 oygacha bo'lgan davrda ulanishlar zichligi kattalar darajasining taxminan 150% darajasiga etadi va keyinchalik ulanishlar keng qirqiladi. Sinaptik zichlik vizual korteksda ikki yildan to'rt yilgacha kattalar darajasiga qaytadi. Prefrontal korteks kabi boshqa sohalarda (rejalashtirish va fikr yuritishni qo'llab-quvvatlaydi deb o'ylashadi) zichlik sekinroq oshadi va birinchi yildan keyin eng yuqori darajaga etadi. Zichlikning kattalar darajasiga tushishi kamida yana 10-20 yil davom etadi; shuning uchun o'spirinlik davrida ham frontal sohalarda sezilarli miya rivojlanishi mavjud. Miyaning metabolizmi (glyukozani qabul qilish, bu sinaptik ishlashning taxminiy ko'rsatkichi) ham dastlabki yillarda kattalar darajasidan yuqori. Glyukozani iste'mol qilish darajasi to'rtdan besh yilgacha kattalar darajasining taxminan 150% darajasida. Taxminan o'n yoshga kelib, miya almashinuvi ko'pgina kortikal mintaqalar uchun kattalar darajasiga tushdi. Miyaning rivojlanishi sinaptogenez portlashlari, zichlik cho'qqilari, so'ngra sinapsni qayta tashkil etish va barqarorlashtirishdan iborat. Bu turli xil miya mintaqalari uchun turli vaqtlarda va har xil stavkalarda sodir bo'ladi, bu esa har xil turdagi bilimlarni rivojlantirish uchun har xil sezgir davrlar bo'lishi mumkinligini anglatadi. Miyaning erta rivojlanishiga oid nevrologiya tadqiqotlari ko'plab mamlakatlarda, shu jumladan AQSh va Buyuk Britaniyada uch yoshgacha bo'lgan bolalar uchun hukumat ta'lim siyosatidan xabardor bo'ldi. Ushbu siyosat bolalar bog'chasi va maktabgacha yoshdagi bolalarning atrof-muhitini boyitishga, ularni yosh miyaning o'rganish salohiyatini maksimal darajada oshirish uchun o'ylangan tajribalar va ta'sirlarga duchor qilishga qaratilgan.

Nevrologiya ta'lim to'g'risida ma'lumot bera oladimi?

Tadqiqotchilarning tobora ko'payib borayotgani tadqiqotning samarali sohasi sifatida ta'limiy nevrologiyani yaratishga intilayotgan bo'lsa-da, nevrologiya va ta'lim sohalari o'rtasida amaliy hamkorlik potentsiali va nevrologik ilmiy tadqiqotlarning haqiqatan ham o'qituvchilarga taqdim etadigan biron bir narsasi borligi to'g'risida munozaralar davom etmoqda.

Daniel Uillingem[20] "nevrologiya ta'lim nazariyasi va amaliyoti uchun ma'lumotli bo'lishi mumkinmi yoki yo'qmi, munozarali emas", deb ta'kidlaydi. U rivojlanish disleksiyasi asosan vizual yoki fonologik kelib chiqish buzilishi ekanligini aniqlashda faqat xulq-atvor tadqiqotlari hal qiluvchi bo'lmaganligiga e'tibor qaratmoqda. Neyroimaging tadqiqotlari fonologik qayta ishlashni qo'llab-quvvatlovchi miya mintaqalarida disleksiya bilan og'rigan bolalar uchun faollashuvning pasayishini aniqlay oldi,[21] shuning uchun disleksiyaning fonologik nazariyasi uchun xulq-atvor dalillarini qo'llab-quvvatlaydi.

Jon Bruer esa[13] nevrologiya va ta'lim o'rtasidagi aloqani, ikkalasini bog'lash uchun tadqiqotning uchinchi sohasi bo'lmasdan, aslida imkonsizligini taklif qiladi, boshqa tadqiqotchilar bu fikrni juda noumid deb hisoblashadi. Usha Gosvami asosiy nevrologiya va ta'lim o'rtasida ko'proq ko'priklar qurilishi va neyromitlar (quyida ko'rib chiqing) deb nomlanishi kerakligini tan olgan holda.[22] kognitiv rivojlanish nevrologiyasi allaqachon ta'lim sohasida bir nechta kashfiyotlarni amalga oshirganligini va shuningdek, rivojlanishni baholash uchun ishlatilishi mumkin bo'lgan "asabiy belgilar" ni kashf etishiga olib keldi. Boshqacha qilib aytganda, asabiy faoliyat yoki tuzilish bosqichlari belgilanmoqda, bunga qarshi ularning rivojlanishini baholash uchun shaxsni taqqoslash mumkin.

Masalan, voqea bilan bog'liq potentsial (ERP) tadqiqotlari semantik ishlov berish (masalan, N400), fonetik ishlov berish (masalan, mos kelmaslikning salbiyligi) va sintaktik ishlov berish (masalan, P600) belgilarini o'z ichiga olgan tilni qayta ishlashning bir nechta asabiy imzosini topdi. Gosvami[22] ushbu parametrlar endi bolalarda uzunlamasına tekshirilishi mumkinligini va ba'zi bir o'zgarishlarning rivojlanishida ma'lum rivojlanish buzilishlarini ko'rsatishi mumkinligini ta'kidlaydi. Bundan tashqari, ushbu asabiy belgilarning yo'naltirilgan ta'lim tadbirlariga javobi aralashuv samaradorligining o'lchovi sifatida ishlatilishi mumkin. Gosvami kabi tadqiqotchilarning ta'kidlashicha, kognitiv nevrologiya ta'lim uchun turli xil qiziqarli imkoniyatlarni taklif qilishi mumkin. Maxsus ta'lim uchun bularga maxsus ta'lim ehtiyojlarini erta tashxislash kiradi; turli xil ma'lumotlarning ta'limga ta'sirini kuzatish va taqqoslash; ta'limdagi individual farqlar va o'quvchining fikriga mos keladigan eng yaxshi usullar to'g'risida tushunchani oshirish.[22]

Gosvami tomonidan ta'kidlangan neyroimagingning potentsial qo'llanilishi[22] ta'limning buzilishida kechiktirilgan rivojlanish va atipik rivojlanish o'rtasidagi farqni ajratib turadi. Masalan, disleksiya bilan og'rigan bola o'qish funktsiyalarini odatdagi o'quvchilardan umuman boshqacha rivojlantiradimi yoki u xuddi shu traektoriya bo'yicha rivojlanib bormoqda, lekin buni amalga oshirish uchun ko'proq vaqt kerakmi? Darhaqiqat, o'ziga xos til nuqsonlari va disleksiyasi bo'lgan bolalarda tabiatan tubdan farq qiladigan emas, balki til tizimining rivojlanishi kechikayotganini ko'rsatadigan dalillar allaqachon mavjud.[23][24] Autizm kabi kasalliklarda miya rivojlanishi sifat jihatidan farq qilishi mumkin, bu esa "ong nazariyasi" bilan bog'liq miya mintaqalarida rivojlanish etishmasligini ko'rsatmoqda.[25]

Gosvami[22] shuningdek, neyroimaging yordamida ma'lum o'quv dasturlarining ta'sirini baholash uchun foydalanish mumkin, masalan, Dore, serebellar defitsiti gipotezasiga asoslangan mashqlar, muvozanat mashqlari orqali o'qishni yaxshilashga qaratilgan. Ba'zi miya tasvirlash tadqiqotlari maqsadli ta'lim choralarini ko'radigan disleksiyaga chalingan bolalar uchun ularning miyani faollashtirish uslublari o'qish buzilishi bo'lmagan odamlarga o'xshab keta boshlaganligini va bundan tashqari, boshqa miya mintaqalari kompensatsiya mexanizmlari sifatida harakat qilayotganini ko'rsatishni boshlaydilar.[26][27] Bunday topilmalar o'qituvchilarga, hatto disleksik bolalarning fe'l-atvori yaxshilanganligini ko'rsatgan taqdirda ham, yozma ma'lumotlarni qayta ishlashning asab va kognitiv mexanizmlari boshqacha bo'lishi mumkinligini tushunishga yordam berishi mumkin va bu ushbu bolalarning davomli ko'rsatmalariga amaliy ta'sir ko'rsatishi mumkin.[28]

Neuroscience tadqiqotlari, asosan, disleksiya holatida, ta'lim buzilishlarining "asabiy belgilarini" aniqlash qobiliyatidan dalolat berdi. EEG tadqiqotlari shuni ko'rsatdiki, disleksiya xavfi ostida bo'lgan bolalar (ya'ni, disleksiyadan aziyat chekadigan yaqin oila a'zolari bilan), tilning semantik mazmunini tushunishdan oldin ham, nutq tovushlarining o'zgarishiga atipik asabiy ta'sir ko'rsatadi.[29] Bunday tadqiqotlar nafaqat potentsial ta'lim buzilishlarini erta aniqlashga imkon beradi, balki disleksiyaning fonologik gipotezasini xulq-atvor tadqiqotlari uchun imkoni bo'lmagan tarzda qo'llab-quvvatlaydi.

Ko'pgina tadqiqotchilar ta'lim va nevrologiya o'rtasidagi nikohga nisbatan ehtiyotkorlik bilan optimizmni qo'llab-quvvatlaydilar va ikkalasi orasidagi farqni bartaraf etish uchun yangi eksperimental paradigmalar ishlab chiqish zarur va bu yangi paradigmalar nevrologiya va o'zaro aloqalarni ushlab turish uchun ishlab chiqilgan bo'lishi kerak. turli darajadagi tahlillar (neyronal, kognitiv, xulq-atvor) bo'yicha ta'lim.[28]

Nörobilim va ta'lim: misollar

Til va savodxonlik

Inson tili aqlning noyob fakulteti[30] og'zaki va yozma tilni tushunish va ishlab chiqarish qobiliyati o'quv yutuqlari va yutuqlari uchun muhimdir.[31] Og'zaki til bilan bog'liq qiyinchiliklarga duch keladigan bolalar ta'lim siyosati va amaliyoti uchun muhim muammolarni tug'diradi;[32] Milliy strategiyalar, har bir bola suhbatdosh (2008). Qiyinchiliklar boshlang'ich maktab yillarida davom etishi mumkin[33] bu erda, og'zaki til bilan bog'liq asosiy kamchiliklardan tashqari, bolalar savodxonlik bilan bog'liq muammolarga duch kelishadi,[34] hisoblash[35] va xulq-atvori va tengdoshlarning munosabatlari.[36] Ushbu qiyinchiliklarni bartaraf etish uchun erta aniqlash va aralashish, shuningdek o'quv muhitining atipik til rivojlanishini qo'llab-quvvatlash usullarini aniqlash juda muhimdir.[32] Muomala qilinmagan nutq va til ehtiyojlari inson uchun ham, milliy iqtisodiyot uchun ham katta xarajatlarga olib keladi (ICAN, 2006).

So'nggi o'n yil ichida yosh bolalarning tilni fonetik, so'z va gap darajasida qayta ishlashini o'rganadigan nevrologiya tadqiqotlarida sezilarli o'sish kuzatildi.[37] Rivojlanishning dastlabki bosqichlarida tilning barcha darajalari uchun neytral substratlarni aniqlash mumkinligiga aniq ko'rsatmalar mavjud. Shu bilan birga, aralashuv tadqiqotlari miyani tilni qayta ishlash uchun moslashuvchanligini saqlab qolish usullarini namoyish etdi. Eshitish tilini qayta ishlash dasturi bilan intensiv davolanish chap temporo-parietal korteks va pastki frontal girusdagi funktsional o'zgarishlar bilan birga keldi.[27] Biroq, ushbu natijalarning og'zaki va yozma tilni qanchalik umumlashtirishi haqida bahslashilmoqda.[38]

Tilga qiynalgan bolalarning ta'lim ehtiyojlarini qondirish bilan nevrologiya tadqiqotlari natijalari o'rtasidagi munosabatlar hali o'rnatilmagan. Taraqqiyotning aniq yo'llaridan biri bu o'rganish muhitida amal qilish uchun muhim bo'lgan savollarni hal qilish uchun neyrologik usullardan foydalanishdir. Masalan, til ko'nikmalarini bitta umumiy xususiyatga bog'lash darajasi va rivojlanishning bunday xususiyatining izchilligi munozarali masalalardir.[39] Biroq, miya faoliyatini to'g'ridan-to'g'ri baholash ushbu bahslarni xabardor qilishi mumkin.[40] Til tizimining tarkibiy qismlarini va vaqt o'tishi bilan ularning o'zgarishi yo'llarini batafsil anglash, muqarrar ravishda ta'lim amaliyotiga ta'sir qilishi mumkin.

Matematika

Matematik ko'nikmalar nafaqat milliy iqtisodiyot uchun, balki shaxsning hayoti uchun ham muhimdir: kam sonli raqamlar hibsga olish, depressiya, jismoniy kasalliklar, ishsizlik ehtimolini oshiradi.[41] Kam sonli raqamlarning asosiy sabablaridan biri bu diskalkaliya deb ataladigan tug'ma holatdir. "Aqliy kapital va farovonlik to'g'risida" Foresight hisobotida aytilganidek: "Rivojlanish dyscalculia - past darajadagi, ammo yuqori ta'sirga ega bo'lganligi sababli, uning ustuvorligini oshirish kerak. Dyscalculia raqamlar bilan bog'liq bo'lib, bolalarning 4-7% gacha ta'sir qiladi. Uning darajasi ancha past profilaktika disleksiyaga qaraganda ko'proq ta'sir ko'rsatishi mumkin: umr bo'yi daromadni 114000 funtga kamaytirishi va besh yoki undan ko'piga erishish ehtimolini kamaytirishi mumkin. GCSE (A * -C) 7-20 foiz punktga. Uy va maktabdagi tadbirlar yana Loyiha tomonidan aniqlandi. Shuningdek, texnologik aralashuvlar juda istiqbolli bo'lib, ularga individual ravishda ko'rsatma va yordam beriladi, ammo bu ko'proq rivojlanishga muhtoj. "(Qisqacha mazmuni, 5.3-bo'lim) Matematikaning tipik va atipik rivojlanishini tushunish asosiy matematik o'quv dasturini ishlab chiqish va yordam berish uchun hal qiluvchi ahamiyatga ega. qololmaydiganlar.[42] So'nggi o'n yil ichida oddiy raqamlarni qayta ishlash uchun miya tizimi aniqlandi[43][44] va uning rivojlanishiga oydinlik kiritadigan bolalar miyasini bir nechta tadqiqotlar.[9]

Dalillarning tobora yaqinlashib borishi, diskaluliya to'plamdagi ob'ektlar sonini aks ettirish uchun meros bo'lib o'tgan yadro tizimidagi defitsit va to'plamlar bo'yicha operatsiyalar songa qanday ta'sir qilishi bilan bog'liqligini ko'rsatmoqda.[45] va ushbu qobiliyatlarni qo'llab-quvvatlovchi asab tizimlarida.[9] Ushbu asosiy defitsit o'quvchining to'plamlarni sanash va kattalikdagi to'plamlarga buyurtma berish qobiliyatiga ta'sir qiladi, bu esa o'z navbatida arifmetikani tushunishni juda qiyinlashtiradi va arifmetik faktlar uchun mazmunli tuzilishni ta'minlash juda qiyin. Egizak[46] va oila[47] tadqiqotlar shuni ko'rsatadiki, diskalkuliya juda irsiydir va genetik anomaliyalar, masalan Tyorner sindromi, X xromosomasida genlar uchun muhim rol o'ynaydi.[48]

Diskalkuliya sonning ma'nosida yadro tanqisligining etishmasligidan kelib chiqadi degan bu fikr disleksiya fonologik ishlov berishdagi yadro tanqisligidan kelib chiqadi degan nazariyaga o'xshashdir. Ilmiy taraqqiyot jihatidan ushbu o'xshashliklarga qaramay, xalqning diskalkiya to'g'risida xabardorligi disleksiyaga nisbatan ancha past. The Buyuk Britaniyaning bosh ilmiy maslahatchisi, John Beddington, "rivojlanish diskalkuliasi - bu hozirgi vaqtda disleksiyaning yomon munosabati, jamoatchilik profilining darajasi ancha past. Ammo diskalliyaning oqibatlari hech bo'lmaganda disleksiya kabi og'ir".[49]

Matematik ishlov berishni tushunish uchun nevrologiyani qo'llash allaqachon dastlabki bilim nazariyalaridan tashqarida tushunishga olib keldi. Kognitiv nevrologiya tadqiqotlari raqamlar va ularning munosabatlari to'g'risida asosiy bilimlar uchun mas'ul bo'lgan hayvonlarda va chaqaloqlarda, shuningdek kattalarda mavjud bo'lgan tug'ma "raqamlar hissi" tizimining mavjudligini aniqladi. Ushbu tizim har bir yarim sharda miyaning parietal lobida joylashgan.[43][50] Ushbu parietal tizim bolalar va kattalarda asosiy raqamli vazifalar paytida faol bo'ladi,[51][52] ammo rivojlanish jarayonida u ko'proq ixtisoslashganga o'xshaydi. Bundan tashqari, matematik o'rganishda nogiron bolalar (diskaluliya) ushbu mintaqada, odatda, asosiy raqamli vazifalar davomida rivojlanayotgan bolalarga qaraganda kuchsizroq faollikni namoyon etishadi.[9] Ushbu natijalar neyroimaging yordamida asosiy kognitiv funktsiyalar va yuqori darajadagi o'qitish o'rtasidagi bog'liqliklar, masalan, ikkita raqamni taqqoslash va arifmetikani o'rganish o'rtasidagi bog'liqliklar haqida qanday muhim ma'lumotlarni taqdim etishini ko'rsatadi.

Ushbu asosiy raqamli ma'noga qo'shimcha ravishda, raqamli ma'lumotlar til tizimida og'zaki ravishda saqlanishi mumkin, bu tizim nevrologiya tadqiqotlari miya darajasida raqamlar tizimiga nisbatan sifat jihatidan farq qiladigan bo'lib chiqa boshlaydi.[53] Ushbu tizim shuningdek, haftaning kunlari, yilning oylari va hatto she'riyat kabi boshqa yaxshi o'rganilgan og'zaki ketma-ketliklar haqidagi ma'lumotlarni saqlaydi va raqamli ishlov berish uchun hisoblash va ko'paytirish jadvallarini o'rganishni qo'llab-quvvatlaydi. Ko'pgina arifmetik muammolar shunchalik o'rganilganki, ular og'zaki faktlar sifatida saqlanadi, boshqa murakkab masalalar uchun qandaydir visuo-fazoviy aqliy tasavvur zarur.[54] Ushbu arifmetik ko'nikmalarning turli miya mexanizmlari tomonidan qo'llab-quvvatlanishini ko'rsatish, arifmetik bilimlarni egallash uchun zarur bo'lgan o'quv jarayonlarini chuqurroq anglash imkoniyatini beradi.

Matematik o'rganishdagi nogironlik bo'yicha neyroimaging tadqiqotlari hali ham kam uchraydi, ammo diskalkaliya nevrologiya tadqiqotchilari uchun qiziqishni kuchaytiradigan sohadir. Har xil asab mexanizmlari matematik ko'rsatkichlarning turli elementlariga hissa qo'shganligi sababli, diskaluliya bilan og'rigan bolalar miya darajasida anormallikning o'zgaruvchan naqshlarini ko'rsatishi mumkin. Masalan, diskaluliya bilan og'rigan ko'plab bolalarda disleksiya mavjud bo'lib, ular matematikani qo'llab-quvvatlaydigan og'zaki tarmoqlarning turli xil faollashuvini ko'rsatishi mumkin, faqat diskalkulyaga ega bo'lganlar parietal sonlar tizimining buzilishini ko'rsatishi mumkin. Darhaqiqat, diskalsuliga chalingan bolalarga nisbatan olib borilgan ozgina tadqiqotlar faqat raqamlar tizimining miya darajasidagi buzilishlariga ishora qilmoqda.[9][55]

Bunday dalillar dyscalculia raqamlar sonining miya darajasining etishmasligidan kelib chiqadi, deb hisoblaydigan tadqiqotchilar va bu tartibsizlik raqamli ma'lumotlarga kirish uchun raqamli belgilardan foydalanish muammosidan kelib chiqadi deb hisoblaydiganlar o'rtasida nazariy munozaralarga hissa qo'shishni boshlaydilar. Dissalkulyaning aniq tekshiriladigan gipotezalarni yaratadigan nazariy modellarini doimiy ravishda ishlab chiqish bilan, matematik o'qitishning buzilishi va ularning asabiy korrelyatlari o'rtasidagi bog'liqlikni o'rganadigan tadqiqotlarni rivojlantirishda tez sur'atlar bo'lishi kerak.[20]

Ijtimoiy va hissiy bilish

So'nggi 10 yil ichida hayotning barcha jabhalarida muvaffaqiyatga hissa qo'shishda hissiy qobiliyat va xususiyatlarning roliga qiziqish portlashi yuz berdi. Tushunchasi Hissiy aql (EI)[56] keng e'tirofga sazovor bo'ldi va "Aqliy kapital va farovonlik to'g'risida" Foresight hisobotida keltirilgan. Ba'zilar EI an'anaviy kognitiv aqlga qaraganda muhimroq va uni osonroq oshirish mumkin degan ta'sirchan da'volarni ilgari surishdi.[57] Tizimli tadqiqotlar ushbu da'volarni hali ko'p qo'llab-quvvatlamagan, ammo EI akademik muvaffaqiyat bilan bog'liqligi aniqlangan[4][58] va u akademik muvaffaqiyatsizlikka uchragan va ijtimoiy chetga chiqish xavfi ostida bo'lgan guruhlar uchun alohida ahamiyatga ega bo'lishi mumkinligiga ba'zi dalillar mavjud. Zaif dalillarga qaramay, bolalar va yoshlarning ijtimoiy va hissiy salohiyatini, ruhiy salomatligini va psixologik farovonligini oshirishga e'tibor qaratildi,[59] ayniqsa, maktablarda universal xizmatlarga, profilaktika va erta aralashishga (masalan, Buyuk Britaniyada ta'limning ijtimoiy va hissiy jihatlari (SEAL) loyihasiga sarmoya kiritish natijasida [DfES, 2005, 2007]).

Ning asabiy asoslari hissiy tanib olish odatda rivojlanayotgan bolalarda[60] tekshirildi, ammo hissiyotlarni boshqacha ishlov beradigan atipik rivojlanayotgan bolalarda neyro-tasvirlash ishlari kam.[4] Atipik rivojlanayotgan ushbu populyatsiyalarda erkaklar odatda haddan tashqari ko'p uchraydilar va ayollarning afzalliklari odatda EI o'lchovlarida va hissiyotlarni qayta ishlashning aksariyat sohalarida qayd etiladi. Mimikalarni qayta ishlashda ayollarning afzalligi, miyaning etukligi va ijtimoiy o'zaro ta'sirini hisobga olgan holda, birlashtirilgan hisob bilan eng yaxshi tushuntiriladi.[61]

Bolalardagi miyaning prefrontal shikastlanishi ijtimoiy xulq-atvorga ta'sir qiladi, ijtimoiy qabul qilish, ma'qullash yoki rad etishga befarqlikni keltirib chiqaradi.[62] Ushbu miya sohalari xijolat, rahm-shafqat va hasad kabi ijtimoiy hissiyotlarni qayta ishlaydi. Bundan tashqari, bunday zarar real dunyo sharoitida kognitiv va ijtimoiy qarorlarni qabul qilishni susaytiradi[55][63] ijtimoiy va madaniy omillar kognitiv o'rganish va qaror qabul qilishda muhim ahamiyatga ega degan Vygotskiy qarashlarini qo'llab-quvvatlash. Ushbu nuqtai nazar nevrologik va ni birlashtirish muhimligini ta'kidlaydi ijtimoiy qurilish istiqbollar, bu holda hissiyotning o'tkaziladigan ta'limga ta'sirini tekshirishda.[64]

Biroq, ong va hamdardlik rivoji to'g'risida to'liqroq tushuncha hosil qilish uchun rivojlanish fanlari va nevrologiyani birlashtirishga qaratilgan ko'plab kamchiliklar mavjud.[65] Ta'lim bo'yicha tadqiqotlar o'quvchining his-tuyg'ular haqida o'z-o'zini aniq hisobotiga tayanadi, bu ba'zi o'quvchilar uchun mumkin bo'lmasligi mumkin, masalan, aleksitimiya bilan og'riganlar - hissiyotlarni aniqlash va ta'riflashda qiyinchilik, bu odatdagi kattalarning 10 foizida uchraydi. Hissiy ongni neyroimaging usullari yordamida o'lchash mumkin[66] turli darajadagi emotsional ongning amigdala, oldingi insular korteks va medial prefrontal korteksdagi differentsial faollik bilan bog'liqligini ko'rsatmoqda. Bolalik va o'spirinlik davrida miyaning rivojlanishini o'rganish shuni ko'rsatadiki, ushbu sohalarda keng miqyosli tarkibiy o'zgarishlar yuz beradi.[67] Demak, ushbu davrda maktab yoshidagi bolalar va o'smirlarning o'zlarining his-tuyg'ularidan xabardorlik darajasi har xil bo'lishi mumkin, bu sinf xatti-harakatlariga va ba'zi bir o'qitish uslublari va o'quv dasturlarining yondashuvlari qanchalik samarali bo'lishiga ta'sir qilishi mumkin.

Neyroimaging ishi bolalardagi ijtimoiy xulq-atvor buzilishlarini tushunishda ham yordam bera boshlaydi. Masalan, bolalardagi xiralashgan xususiyatlar o'qituvchilar uchun juda qiyin muammo bo'lib, ular yurish-turish buzilishining jiddiy shaklini anglatadi. Jons va boshq. (2009)[68] shafqatsiz-emotsional xususiyatlarga ega bo'lgan bolalar qo'rqinchli yuzlarga javoban o'ng amigdalada miyaning kamroq faollashishini aniqladilar va bu emotsional bezovtalikning asabiy korrelyatsiyasi rivojlanishning boshida mavjudligini ko'rsatdi.

Londondagi Ta'lim nevrologiyasi markazining tadqiqotchilari miyada ijtimoiy bilim qanday rivojlanib borishini tekshiradigan tadqiqot organini yaratishda muhim rol o'ynadilar. Xususan, "O'rganish miyasi" ning mualliflaridan biri Sara-Jeyn Blakemor o'spirinlik davrida ijtimoiy bilish bilan bog'liq miyaning rivojlanishi bo'yicha nufuzli tadqiqotlarni nashr etdi. Uning tadqiqotlari shuni ko'rsatadiki, hissiy qayta ishlash bilan bog'liq bo'lgan miya mintaqalarida faollik o'spirinlik davrida muhim funktsional o'zgarishlarga uchraydi.[69]

Diqqat va ijro etuvchi nazorat

Diqqat, boshqalarning nisbatan chetlanishiga hissiy muhitning alohida jihatlariga e'tibor qaratishimizga imkon beradigan miya mexanizmlariga ishora qiladi. Diqqat modulyatsiya qiladi sezgir ishlov berish "yuqoridan pastga" uslubida. Muayyan buyumga yoki shaxsga uzoq vaqt davomida tanlab e'tiborni jalb qilish, bu sinf uchun muhim ahamiyatga ega. Diqqat - bu DEHBda buzilgan asosiy bilim qobiliyatidir, natijada vazifalarni bajarish yoki tafsilotlarga qatnashish qiyinlashadi.[70] E'tibor jihatlari, shuningdek, ijtimoiy bo'lmagan xatti-harakatlar va xatti-harakatlarning buzilishini ko'rsatadigan bolalarda atipik bo'lishi mumkin. Asosiy nevrologiya nuqtai nazaridan so'nggi dalillar shuni ko'rsatadiki, diqqat qobiliyatlari erta aralashish va mashg'ulotlarga eng yaxshi javob beradigan inson miyasining funktsiyalaridan biri bo'lishi mumkin (masalan.)[71]).

Bundan tashqari, a neyrokonstriktivist istiqbolli e'tibor - bu hayotiy mexanizm bo'lib, uning yordamida bola atrof-muhitning o'ziga xos tomonlarini faol ravishda tanlab, keyingi ta'lim olish imkoniyatini beradi. Ijro etuvchi funktsiyalarga kiruvchi ma'lumot yoki javoblarni tormozlash, aqliy qadamlar yoki harakatlar ketma-ketligini oldindan rejalashtirish, vazifalarga tegishli va o'zgaruvchan ma'lumotlarni qisqa muddatlarga (ish xotirasi) saqlash qobiliyati kiradi.[72] Diqqat singari, ijro funktsiyalari qobiliyatlari ham ta'lim kontekstida domenga xos bilim va ko'nikmalarni egallash uchun juda muhim maydon bo'lib xizmat qiladi. So'nggi paytlarda o'tkazilgan tadqiqotlar shuni ko'rsatadiki, maktabgacha yoshdagi ijro mahoratini o'rgatish maktabdagi erta muvaffaqiyatsizlikni oldini oladi.[73][74] DEHB, ijtimoiy-axloqiy buzuqlik, xulq-atvori buzilishi va autizmga chalingan bolalar ijro etuvchi funktsiyalarning atipik shakllarini namoyon qilishi mumkin. Asosiy nevrologiya tadqiqotlari kattalardagi prefrontal korteksni o'z ichiga olgan ijro etuvchi funktsiyalar bilan bog'liq bo'lgan asosiy miya tuzilmalari va davrlarini aniqladi. Biroq, ushbu sxemaning rivojlanishi va ijro funktsiyasidagi individual farqlarning genetik va asabiy asoslarini tushunish uchun juda ko'p tadqiqotlar qilinishi kerak.[75] "Foresight Mental Capital and Wellbeing" loyihasi diqqatni jalb qilish va ijro etish funktsiyalari ko'nikmalarini kelajakdagi muammolarni o'rganishdagi qiyinchiliklar uchun muhimligini aniqlab beradi va ta'kidlaydi ("Ta'lim qiyinligi: kelajakdagi muammolar" ning 2.2.4 va 2.4 bo'limlari).

Nörobilim va ta'lim: juda ko'prikmi?

Ko'pchilik nevrologiya ta'limga muhim hissa qo'shishi mumkin va ta'limning nevrologiya sohasini yaratish uchun potentsial mavjud deb ishonganlarning ko'pchiligiga qaramay, ba'zi tadqiqotchilar bu ikki fan o'rtasidagi farqlar ular uchun hech qachon to'g'ridan-to'g'ri bo'lishi uchun juda katta deb o'ylashadi. amaliy jihatdan mazmunli tarzda bog'langan. 1997 yilda Jon Bruer o'zining "Neyrologiya va ta'lim argumenti" deb nomlagan tanqidini e'lon qildi.[13]

Bruerning ta'kidlashicha, "nevrologiya va ta'lim argumenti" rivojlanish neyrobiologiyasining uchta asosiy topilmalaridan kelib chiqadi.

  1. Erta bolalik miyada sinapslar sonining tez o'sishi (sinaptogenez) bilan tavsiflanadi va bu kengayishdan keyin Azizillo davri keladi.
  2. Rivojlanayotgan miya ma'lum hissiyot va harakat qobiliyatlarini rivojlantirish uchun eng mos bo'lgan tajribaga bog'liq bo'lgan muhim davrlar deb ataladi.
  3. Rag'batlantiruvchi muhit ko'proq sinaptogenezni keltirib chiqaradi. Asosiy dalil shundaki, bolalar sinaptik o'sish va miya faolligining yuqori darajasiga ega bo'lgan erta yoshda ko'proq narsani o'rganishga qodir.

Neyrobiologiya tomonidan berilgan miyaning erta rivojlanishi haqidagi bilimlar ta'limga oid turli xil dalillarni qo'llab-quvvatlash uchun ishlatilgan. Masalan, yosh miyaning katta moslashuvchanligi va o'rganish salohiyati tufayli har qanday mavzuni yosh bolalarga intellektual jihatdan halol shaklda o'rgatish mumkin degan fikr.[76] Shu bilan bir qatorda, ma'lum bir ko'nikmalarni yoki bilimlarni o'rganish uchun muhim davrlar mavjud degan fikr, hayvonotshunoslikda, agar rivojlanayotgan miya ma'lum hissiy ma'lumotlardan mahrum bo'lsa, ushbu kirishni qayta ishlashga mas'ul bo'lgan miya sohalari keyinchalik rivojlanishda to'liq rivojlanmaydilar. va shu tariqa "agar siz oynani sog'insangiz, siz nogironlik bilan o'ynayapsiz".[77]

Bruerning nevrologiya va ta'limga oid hisobotlarga oid asosiy tortishuvlaridan biri bu haqiqiy nevrologiya dalillarining etishmasligi. "Va'dalar yillari: Amerika bolalari uchun keng qamrovli ta'lim strategiyasi" (Karnegi korporatsiyasi, Nyu-York, 1996) kabi ko'plab ma'ruzalarda ko'plab kognitiv va xulq-atvor psixologiyasini keltiradi, ammo miyaga asoslangan bir nechta tadqiqotlardan iborat bo'lib, shu bilan birga dramatik xulosalar chiqaradi. o'rganishda miyaning roli.

Bruer xulq-atvor sohasidagi ilm-fan ta'lim siyosatini xabardor qilish uchun asos yaratishi mumkin, ammo nevrologiya bilan bog'lanish "juda uzoq ko'prik" dir va nevrologiyani ta'limga tatbiq etishning cheklanishi nevrologiya bilimlarining cheklanishlaridan kelib chiqadi. Bruer o'z tanqidini nevrologiya va ta'lim argumentining uchta asosiy tamoyillariga oid mavjud bilimlarning cheklanganligini bahslashtirib qo'llab-quvvatlaydi. Neyromitlarga qarang.

Yana bir muammo - bu tasvirlash usullarining fazoviy rezolyutsiyasi bilan sinaptik o'zgarishlarning fazoviy rezolyutsiyasi o'rtasidagi farq, bu o'quv jarayonlari zaminida yotadi. Shunga o'xshash muammo vaqtinchalik echim bilan bog'liq. Bu kognitiv ko'nikmalarning subkomponentlarini miya faoliyati bilan bog'lashni qiyinlashtiradi. However, the primary flaw of the education neuroscience argument in Bruer's opinion is that it attempts to link what happens at the synaptic level to higher order learning and instruction.The terminology, "Mind, brain and education" alludes to the idea that if we cannot bridge education and neuroscience directly, then we can use two existing connections to inform education. These are the link between cognitive psychology and education, and between cognitive psychology and neuroscience.

Bruer contends that neuroscience in its current form has little to offer educators at the practical level. Cognitive science on the other hand, can serve as a basis for the development of an applied science of learning and education. Other researchers have suggested alternative bridges to the cognitive psychology suggested by Bruer.[13] Meyson[14] suggests that the gap between education and neuroscience can be best bridged by educational psychology, which she outlines as being concerned with "developing descriptive, interpretive and prescriptive models of student learning and other educational phenomena".

Challenges to educational neuroscience

Despite Willingham's assertion[20] that the potential for neuroscience to contribute to educational practice and theory is already beyond doubt, he highlights three challenges that must be overcome to marry the two disciplines effectively.

The Goals Problem: Willingham suggests that education is a so-called "artificial science" that seeks to construct an ‘artifact’, in this case a set of pedagogic strategies and materials. Neuroscience, on the other hand is a so-called "natural science", concerned with the discovery of natural principles that describe neural structure and function. This difference means that some goals set by education are simply impossible to answer using neuroscience research, for example, the building of character or aesthetic sense in children.

The Vertical Problem: Levels of analysis: Willingham suggests that the highest level of analysis employed by neuroscientists is the mapping of brain structure and activity onto cognitive function, or even the interaction of cognitive functions (i.e. the impact of emotion on learning). Within neuroscience research these functions are studied in isolation for the sake of simplicity, and the nervous system as a whole, functioning in its entirety with all its huge composition of functional interactions, is not considered. For educators, on the other hand, the lowest level of analysis would be the mind of a single child, with levels increasing to incorporate the classroom, neighborhood, country etc.

Thus, importing research about a single cognitive factor in isolation, into a field in which context is essentially important creates an inherent difficulty. For example, while rote learning may be shown to improve learning in the research laboratory, the teacher cannot implement that strategy without considering the impact on the child's motivation. In return, it is difficult for neuroscientists to characterize such interactions in a research setting.

The Horizontal Problem: Translating research findings: While education theory and data are almost exclusively behavioral, findings from neuroscience research can take on many forms (e.g. electrical, chemical, spatial, temporal etc.). The most common form of data taken from neuroscience to education is the spatial mapping of brain activation to cognitive function. Willingham (2009) highlights the difficulty in applying such spatial information to educational theory. If a certain brain region is known to support a cognitive function relevant for education, what can actually be done with that information? Willingham suggests that this ‘horizontal problem’ can be solved only when a rich body of behavioral data and theories already exist,[78] and points out that such methods have already been successful in identifying subtypes of dyslexia (e.g.[79][80]).

Willingham suggests that what is essential for a successful union of neuroscience and education is that both fields have realistic expectations of one another. For example, educators should not expect that neuroscience will provide prescriptive answers for educational practice, answers for educational goals that are incompatible with neuroscientific methods (e.g. aesthetic training), or levels of analysis beyond the individual level. Finally Willingham suggests that neuroscience will only be useful to educators when targeted at a specific problem at a fine grained level of analysis, such as how people read, but that these data will only be useful in the context of well developed behavioral theories.

Other researchers, such as Katzir & Pareblagoev[28] have pointed out that neuroimaging methodology as it stands may not be suitable for the examination of higher level cognitive functions, because it relies primarily on the ‘subtraction method’. By this method, brain activity during a simple control task is subtracted from that of a ‘higher order’ cognitive task, thus leaving the activation that is related specifically to the function of interest. Katzir & Pareblagoev suggest that while this method may be very good for examining low level processing, such as perception, vision and touch, it is very hard to design an effective control task for higher order processing, such as comprehension in reading and inference making. Thus, some researchers[81][82] argue that functional imaging technologies may not be best suited for the measurement of higher order processing. Katzir & Pareblagoev, suggest that this may not be a deficit of the technology itself, but rather of the design of experiments and the ability to interpret the results. The authors advocate using experimental measures in the scanner for which the behavioural data is already well understood, and for which there exists a strong theoretical framework.

Transforming challenges into opportunities

Another recent review of the educational neuroscience debate by Varma, McCandliss and Schwartz[83] focuses on eight primary challenges, divided into scientific challenges and practical challenges, facing the field, and attempts to transform those challenges into opportunities.

Scientific challenges

Usullari: Neuroscience methods create artificial environments and thus cannot provide useful information about classroom contexts. Furthermore, the concern is that if neuroscience begins to influence educational practice too heavily, there may be a de-emphasis of contextual variables, and solutions to educational problems may become primarily biological rather than instructional. However, Varma et al. argue that novel experimental paradigms create the opportunity to investigate context, such as brain activation following different learning procedures[84] and that neuroimaging can also allow for the examination of strategic/mechanistic developmental changes that cannot be tapped by reaction time and behavioural measures alone. Furthermore, Varma et al. cite recent research that shows that the effects of cultural variables can be investigated using brain imaging (e.g.[85]), and the results used to draw implications for classroom practice.

Ma'lumotlar: Knowing the brain region that supports an elementary cognitive function tells us nothing about how to design instruction for that function. However, Varma et al. suggest that neuroscience provide the opportunity for a novel analyses of cognition, breaking down behaviour into elements invisible at the behavioural level. For example, the question of whether different arithmetic operations show different speed and accuracy profiles is the result of different efficiency levels within one cognitive system versus the use of different cognitive systems.

Reductionist Theories: Applying neuroscience terminology and theory to educational practice is a reduction and is of no practical use to educators. Nothing is gained be redescribing a behavioural deficit in neuroscientific terms. Varma et al. point out that reductionism is a mode by which sciences are unified, and that the co-opting of neuroscience terminology does not necessitate the elimination of education terminology, it simply provides the opportunity for interdisciplinary communication and understanding.

Falsafa: Education and neuroscience are fundamentally incompatible, because attempting to describe behavioural phenomena in the classroom by describing physical mechanisms of the individual brain is logically wrong. However, neuroscience may help to resolve internal conflicts within education resulting from differing theoretical constructs and terminologies used within subfields of education by providing a measure of uniformity with regards to results reporting.

Pragmatic concerns

Xarajatlar: Neuroscience methods are highly expensive, and the expected outcomes do not justify the costs. However, Varma et al. point out that educationally relevant neuroscience may attract addition funding to education research rather than usurping resources. The essential claim of educational neuroscience is that the two fields are interdependent and that a portion of the funding allocated collectively to the two fields should be directed towards shared questions.

Vaqt: Neuroscience, while expanding rapidly, is still in relative infancy with regards to the non-invasive study of healthy brains, and thus education researchers should wait until more data is collected and distilled into succinct theories. Contrary to this, Varma et al. argue that some success is already evident. For example, studies examining the success of dyslexia remediation programmes[86] have been able to reveal the impact of these programmes on the brain networks supporting reading. This in turn leads to the generation of new research questions.

Boshqaruv: If education allows neuroscience in the door, theories will increasingly be cast in terms of neural mechanisms and debates will rely increasingly on neuroimaging data. Neuroscience will cannibalise resources and education research will lose its independence. Varma et al. argue that the assumption of an asymmetric relationship between the two fields is unnecessary. Education has the potential to influence neuroscience, directing future research into complex forms of cognition and education researchers can help Educational Neuroscience to avoid naïve experiments and repetition of earlier mistakes.

Neuromyths: Thus far most of the neuroscience findings applied to education have turned out to be neuromyths, irresponsible extrapolations of basic research to education questions. Furthermore, such neuromyths have escaped beyond academia and are being marketed directly to teachers, administrators and the public. Varma et al. respond that the existence of neuromyths reveals a popular fascination with brain function. Appropriate translation of educational neuroscience results and well established collaborative research can decrease the likelihood of neuromyths.

A bidirectional relationship

Researchers such as Katzir & Pareblagoev[28] and Cacioppo & Berntson (1992)[87] argue that as well as neuroscience informing education, the educational research approach can contribute to the development of new experimental paradigms in neuroscience research. Katzir and Pareblagoev (2006) suggest the example of dyslexia research as a model of how this bidirectional collaboration might be achieved. In this case, theories of reading processes have guided both the design and interpretation of neuroscience research, but the existing theories were developed primarily from behavioural work. The authors suggest that the establishment of theories, which delineate required skills and subskills for educationally relevant tasks, is an essential requirement for educational neuroscience research to be productive. Furthermore, such theories need to suggest empirically testable connections between educationally relevant behaviours and brain function.

The role of educators

Kurt Fischer, director of Harvard University's Mind, Brain and Education graduate program states "One of the reasons there is so much junk out there is that there are so few people who know enough about education and neuroscience to put the thing together".[88] Educators have been reliant upon others’ expertise for the interpretations from Neuroscience hence have not been able to discern whether the claims made are valid or invalid representations of the research. Without a direct access to the primary research educators may be at risk of misusing results from neuroscience research.[89] The need for so called ‘middlemen’ in the translation of research to practice has led to a situation where the application of cognitive neuroscience research findings is running ahead of the research itself.

In order to negate the need for middlemen, some researchers have suggested the need to developed a group of neuro-educators, a specially trained class of professionals whose role would be to guide the introduction of cognitive neuroscience into educational practice in a sensible and ethical manner. Neuro-educators would play a pivotal role in assessing the quality of evidence purporting to be relevant to education, assessing who is best placed to employ newly developed knowledge, and with what safeguards, and how to deal with unexpected consequences of implemented research findings.[90]

Byrnes & Fox (1998)[91] have suggested that developmental psychologists, educational psychologists and teachers generally fall into one of four orientations with respect to neuroscientific research "(1) those who readily accept (and sometimes over interpret) the results of neuroscientific studies; (2) those who completely reject the neuroscientific approach and consider the results of neuroscientific studies meaningless; (3) those who are unfamiliar with and indifferent toward, neuroscientific research; and (4) those who cautiously accept neuroscientific findings as being a proactive part of the total pattern of findings that have emerged from different corners of the cognitive and neural sciences". Greenwood (2009)[85] suggests that as the body of knowledge available to educators increases, and the ability to be expert in all areas diminishes, the most productive standpoint would the fourth outlined by,[87] that of cautious acceptance of neuroscientific findings and proactive collaboration.

Bennett & Rolheiser-Bennett (2001)[92] point out that "teachers must be aware of and act on the science within the art of teaching". They suggest that educators must become aware of other methods and incorporate them into their practice. Furthermore, Bennett and Rolheiser-Bennett suggest that specific bodies of knowledge will play an important role in informing educators when making important decisions with regards to the "design of learning environments". The bodies of knowledge discussed include multiple intelligences, emotional intelligences, learning styles, the human brain, children at risk and gender. As the authors explain these and other areas are just "lenses designed to extend teachers’ understanding of how students learn, and from that understanding, to make decisions about how and when to select, integrate, and enact items in the ... list".[88]

Meyson[14] supports calls for a two-way constructive collaboration between neuroscience and education, whereby, rather than neuroscience research simply being applied to education, findings from neuroscience research would be used to constrain educational theorizing. In return, education would influence the types of research questions and experimental paradigms used in neuroscience research. Mason also gives the example that while pedagogical practice in the classroom may give rise to educational questions regarding the emotional bases of performance on school tasks, neuroscience has the potential to reveal the brain basis of higher-order thinking processes and thus may help to understand the role that emotion plays in learning and open new areas of study of emotional thought in the classroom.

Neuromyths

Atama "neuromyths " was first coined by an OECD report on understanding the brain.[93] The term refers to the translation of scientific findings into misinformation regarding education. The OECD report highlights three neuromyths for special attention, although several others have been identified by researchers such as Usha Goswami.

  1. The belief that hemispheric differences relate to different types of learning (i.e. left brain versus right brain).
  2. The belief that the brain is plastic for certain types of learning only during certain "critical periods", and therefore that learning in these areas must occur during these periods.
  3. The belief that effective educational interventions have to coincide with periods of synaptogenesis. Or in other words, children's environments should be enriched during the periods of maximal synaptic growth.

Left versus right brain

The idea that the two hemispheres of the brain may learn differently has virtually no grounding in neuroscience research.[4] The idea has arisen from the knowledge that some cognitive skills appear differentially localised to a specific hemisphere (e.g., language functions are typically supported by left hemisphere brain regions in healthy right handed people). However, massive amount of fibre connections link the two hemispheres of the brain in neurologically healthy individuals. Every cognitive skill that has been investigated using neuroimaging to date employs a network of brain regions spread across both cerebral hemispheres, including language and reading, and thus no evidence exists for any type of learning that is specific to one side of the brain.

Muhim davrlar

A critical period is a timeframe during the early life of an animal during which the development of some property or skill is rapid and is most susceptible to alteration. During a critical period, a skill or characteristic is most readily acquired. During this time, the plasticity is most dependent on experiences or environmental influences. Two examples of a critical period are the development of binocular vision and linguistic skills in children. The critical periods neuromyth is an overextension of certain neuroscience research findings (see above) primarily from research into the visual system, rather than cognition and learning. Although sensory deprivation during certain time periods can clearly impede the development of visual skills, these periods are sensitive rather than critical, and the opportunity for learning is not necessarily lost forever, as the term "critical" implies. While children may benefit from certain types of environmental input, for example, being taught a second language during the sensitive period for language acquisition, this does not mean that adults are unable to acquire foreign language skills later in life.

The idea of critical periods comes primarily from the work of Hubel and Wiesel.[94] Critical periods generally coincide with periods of excess synapse formation, and end at around the same time that synaptic levels stabilise. During these periods of synaptic formation, some brain regions are particularly sensitive to the presence or absence of certain general types of stimuli. There are different critical periods within specific systems, e.g. visual system has different critical periods for ocular dominance, visual acuity and binocular function[95] as well as different critical periods between systems, for example, the critical period for the visual system appears to end around the age of 12 years, while that for acquiring syntax ends around 16 years.

Rather than talking of a single critical period for general cognitive systems, neuroscientists now perceive sensitive periods of time during which the brain is most able to be shaped in a subtle and gradual fashion. Furthermore, critical periods themselves may be divided into three phases. The first, rapid change, followed by continued development with the potential for loss or deterioration, and finally a phase of continued development during which the system can recover from deprivation.

Although there is evidence for sensitive periods, we do not know whether they exist for culturally transmitted knowledge systems such as educational domains like reading and arithmetic. Further, we do not know what role synaptogenesis plays in the acquisition of these skills.

Enriched environments

The boyitilgan muhit argument is based on evidence that rats raised in complex environments perform better on maze tasks and have 20–25% more synaptic connections than those raised in austere environments.[96] However, these enriched environments were in laboratory cages, and did not come close to replicating the intensely stimulating environment a rat would experience in the wild. Furthermore, the formation of these additional connections in response to novel environmental stimuli occurs throughout life, not just during a critical or sensitive period. For example, skilled pianists show enlarged representations in the auditory cortex relating specifically to piano tones,[97] while violinists have enlarged neural representations for their left fingers.[98] Even London taxi drivers who learn the London street map in intense detail develop enlarged formations in the part of the brain responsible for spatial representation and navigation.[99] These results show that the brain can form extensive new connections as the result of focused educational input, even when this input is received solely during adulthood. Greenough's work suggests a second type of brain plasticity. Whereas synaptogenesis and critical periods relate to experience-expectant plasticity, synaptic growth in complex environments relates to "experience-dependent" plasticity. This type of plasticity is concerned with environment specific learning, and not to features of the environment that are ubiquitous and common to all members of the species, such as vocabulary.

Experience dependent plasticity is important because it does potentially link specific learning and brain plasticity, but it is relevant throughout the lifetime, not just in critical periods. "Experience-expectant plasticity",[96] suggests that the environmental features necessary for fine tuning hissiy tizimlar are ubiquitous and of a very general nature. These kinds of stimuli are abundant in any typical child's environment. Thus, experience-expectant plasticity does not depend on specific experiences within a specific environment, and therefore cannot provide much guidance in choosing toys, preschools, or early childcare policies. The link between experience and brain plasticity is intriguing. No doubt learning affects the brain, but this relationship does not offer guidance on how we should design instruction.

Bruer also warns of the dangers of enriching environments on the basis of socio-economic value systems, and warns of a tendency to value typically middle class pursuits as more enriching than those associated with a working class lifestyle, when there is no neuroscientific justification for this.

Sinaptogenez

In addition some critics of the Educational Neuroscience approach have highlighted limitations in applying the understanding of early physiological brain development, in particular synaptogenesis to educational theory.

Synaptogenesis research has primarily been carried out on animals (e.g. monkeys and cats). Measures of synaptic density are aggregate measures, and it is known that different types of neuron within the same brain region differ in their synaptic growth rates [70]. Secondly, the purported "critical period" of birth to three years is derived from research on rhesus monkeys, who reach puberty at the age of three, and assumes that the period of synaptogenesis in humans exactly mirrors that of monkeys. It may be more reasonable to assume that this period of neural growth actually lasts until puberty, which would mean until early teenage years in humans.

Periods of intense synaptogenesis are typically correlated with the emergence of certain skills and cognitive functions, such as visual fixation, grasping, symbol use and working memory. However, these skills continue to develop well after the period that synaptogenesis is thought to end. Many of these skills continue to improve even after synaptic density reaches adult levels, and thus the most we can say is that synaptogenesis may be necessary for the emergence of these skills, but it cannot account entirely for their continued refinement.[100] Some other form of brain change must contribute to ongoing learning.

Additionally, the types of cognitive changes usually seen to correlate with synaptogenesis revolve around visual, tactile, movement and working memory. These are not taught skills but rather skills that are usually acquired independent of schooling, even though they may support future learning. How these skills relate to later school learning is, however, unclear. We know that synaptogenesis occurs, and that the pattern of synaptogenesis is important for normal brain function. However, what is lacking is the ability of neuroscience to tell educators what sort of early childhood experiences might enhance children's cognitive capacities or educational outcomes.

Male versus female brain

The idea that a person can have a "male" brain or "female" brain is a misinterpretation of terms used to describe cognitive styles by[101] when attempting to conceptualise the nature of cognitive patterns in people with autism spectrum disorder. Baron-Cohen suggested that while men were better "systemisers" (good at understanding mechanical systems), women were better "empathisers" (good at communicating and understanding others), therefore he suggested that autism could be thought of as an extreme form of the "male brain". There was no suggestion that males and females had radically different brains or that females with autism had a male brain.

O'quv uslublari

A common myth in the field of education is that individuals have different o'quv uslublari, such as 'visual' or 'kinesthetic'. Many individuals will state preferences for the way in which they want to learn, but there is no evidence that matching a teaching technique to a preferred style will improve learning, despite this hypothesis being tested multiple times.[102][103] There may even be harms associated with the use of learning styles, wherein learners become 'pigeonholed', perceiving that they may not be suited to types of learning that are not matched to their 'learning style'[104] (e.g. so-called visual learners may not wish to learn music). Despite this lack of evidence, a 2012 study demonstrated that a belief in the use of learning styles is widespread amongst teachers,[105] and a 2015 study showed that the majority of research papers in Oliy ma'lumot research mistakenly endorse the use of learning styles.[104]

Shuningdek qarang

Adabiyotlar

  1. ^ "Neuroeducation" Emerges as Insights into Brain Development, Learning Abilities Grow Arxivlandi 2013-12-30 da Orqaga qaytish mashinasi, Dana Foundation.
  2. ^ a b Ansari, D; Coch, D (2006). "Bridges over troubled waters: Education and cognitive neuroscience". Kognitiv fanlarning tendentsiyalari. 10 (4): 146–151. doi:10.1016/j.tics.2006.02.007. PMID  16530462.
  3. ^ Coch, D; Ansari, D (2008). "Thinking about mechanisms is crucial to connecting neuroscience and education". Korteks. 45 (4): 546–547. doi:10.1016/j.cortex.2008.06.001. PMID  18649878.
  4. ^ a b v d e f g Goswami, U (2006). "Neuroscience and education: from research to practice?". Neuroscience-ning tabiat sharhlari. 7 (5): 406–411. doi:10.1038 / nrn1907. PMID  16607400.
  5. ^ a b Meltzoff, AN; Kuhl, PK; Movellan, J; Sejnowski, TJ (2009). "Foundations for a New Science of Learning". Ilm-fan. 325 (5938): 284–288. Bibcode:2009Sci...325..284M. doi:10.1126/science.1175626. PMC  2776823. PMID  19608908.
  6. ^ Ansari, D (2008). "Effects of development and enculturation on number representation in the brain". Neuroscience-ning tabiat sharhlari. 9 (4): 278–291. doi:10.1038/nrn2334. PMID  18334999.
  7. ^ McCandliss, BD; Noble, KG (2003). "O'qish buzilishining rivojlanishi: kognitiv nevrologiya modeli". Mental Retardation and Developmental Disability Research Review. 9 (3): 196–204. CiteSeerX  10.1.1.587.4158. doi:10.1002 / mrdd.10080. PMID  12953299.
  8. ^ Gabrieli, JD (2009). "Dyslexia: a new synergy between education and cognitive neuroscience". Ilm-fan. 325 (5938): 280–283. Bibcode:2009Sci...325..280G. CiteSeerX  10.1.1.472.3997. doi:10.1126/science.1171999. PMID  19608907.
  9. ^ a b v d e Narx, GR; Holloway, I; Räsänen, P; Vesterinen, M; Ansari, D (2007). "Rivojlanish dyscalculiia-da parietal kattalikdagi ishlov berishning buzilishi". Hozirgi biologiya. 17 (24): R1042–1043. doi:10.1016 / j.cub.2007.10.013. PMID  18088583.
  10. ^ Davis, A (2004). "The credentials of brain-based learning". Ta'lim falsafasi jurnali. 38 (1): 21–36. doi:10.1111/j.0309-8249.2004.00361.x.
  11. ^ Petitto, LA; Dunbar, K (2004). "New findings from educational neuroscience on bilingual brains, scientific brains, and the educated mind.". In Fischer, K; Katzir, T (eds.). Building Usable Knowledge in Mind, Brain, & Education. Kembrij universiteti matbuoti.
  12. ^ Howard-Jones, P; Pickering, S.; Diack, A (2007). "Perception of the role of neuroscience in education. Summary Report for the DfES Innovation Unit". Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  13. ^ a b v d Bruer, JT (1997). "Education and the brain: A bridge too far". Ta'lim bo'yicha tadqiqotchi. 26 (8): 4–16. doi:10.3102/0013189x026008004. S2CID  46505766.
  14. ^ a b v Mason, L. (2009). "Bridging neuroscience and education: A two-way path is possible". Korteks. 45 (4): 548–549. doi:10.1016/j.cortex.2008.06.003. PMID  18632093.
  15. ^ Fischer, KW (2009). "Mind, Brain, and Education:Building a scientific groundwork for learning and teaching" (PDF). Aql, miya va ta'lim. 3 (1): 3–16. doi:10.1111/j.1751-228X.2008.01048.x.
  16. ^ Frith, C (2007). Making Up the Mind: How the Brain Creates Our Mental World. Oksford: Blekvell. ISBN  978-1-4051-6022-3.
  17. ^ Ischebeck, A.; Zamarian, L; Siedentopf, C; Koppelstätter, F; Benke, T; Felber, S; Delazer, M (2006). "How specifically do we learn? Imaging the learning of multiplication and subtraction". NeuroImage. 30 (4): 1365–1375. doi:10.1016/j.neuroimage.2005.11.016. PMID  16413795.
  18. ^ Bransford, JD; Jigarrang, AL; Cocking, RR (2000). How people learn : brain, mind, experience, and school (Kengaytirilgan tahrir). Washington, DC: National Academy of Sciences: Committee on Developments in the Science of Learning and Committee on Learning Research and Educational Practice. ISBN  978-0-309-07036-2.
  19. ^ Blakemor, SJ; Frith, U (2005). "The learning brain: lessons for education: a precis". Rivojlantiruvchi fan. 8 (6): 459–465. doi:10.1111 / j.1467-7687.2005.00434.x. PMID  16246234.
  20. ^ a b v Willingham, DT (2009). "Three problems in the marriage of neuroscience and education". Korteks. 45 (4): 544–545. doi:10.1016/j.cortex.2008.05.009. PMID  18644588.
  21. ^ Ramsey, JM; Andreason, P; Zametkin, AJ; Aquino, T; King, AC; Hamburger, SD; Pikus, A; Rapoport, JL; Cohen, RM (1992). "Failure to activate the left temporoparietal cortex in dyslexia: An oxygen 15 positron emission tomographic study". Nevrologiya arxivi. 49 (5): 527–534. doi:10.1001/archneur.1992.00530290115020. PMID  1580816.
  22. ^ a b v d e Goswami, U (2004). "Neuroscience and education". Britaniya Ta'lim Psixologiyasi jurnali. 74 (1): 1–14. doi:10.1348/000709904322848798. PMID  15096296. S2CID  2563952.
  23. ^ McArthur, GM; Bishop, DVM (2004). "Which people with specific language impairment have auditory processing deficits?". Kognitiv neyropsixologiya. 21 (1): 79–94. doi:10.1080/02643290342000087. PMID  21038192.
  24. ^ Thomson, J; Baldeweg, T; Goswami, U. (2005). "Amplitude envelope onsets and dyslexia: a behavioural and electrophysiological study". ISCA.
  25. ^ Frith, U; Happe, F (1998). "Why specific developmental disorders are not specific: On-line and developmental effects in autism and dyslexia". Rivojlantiruvchi fan. 1 (2): 267–272. doi:10.1111/1467-7687.00041.
  26. ^ Shaywitz, SE; Shayvits, BA; Fulbrayt, RK; Skudlarski, P; Mencl, biz; Constable, RT; Pugh, KR; Holahan, JM; Marchione, KE; Fletcher, JM; Lyon, GR; Gore, JC (2003). "Neural systems for compensation and persistence: Young adult outcome of childhood reading disability". Biologik psixiatriya. 54 (1): 25–33. CiteSeerX  10.1.1.568.7213. doi:10.1016/S0006-3223(02)01836-X. PMID  12842305.
  27. ^ a b Temple, E; Deutsch, GK; Poldrack, RA; Miller, SL; Tallal, P; Merzenich, MM; Gabrieli, JD (2003). "Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI". Milliy fanlar akademiyasi materiallari. 100 (5): 2860–2865. Bibcode:2003PNAS..100.2860T. doi:10.1073/pnas.0030098100. PMC  151431. PMID  12604786.
  28. ^ a b v d Katzir, T; Pare-Blagoev, J (2006). "Applying cognitive neuroscience research to education: The case of literacy". Ta'lim psixologi. 41 (1): 53–74. doi:10.1207/s15326985ep4101_6.
  29. ^ Guttorm, TK; Leppänen, PH; Poikkeus, AM; Eklund, KM; Lyytinen, P; Lyytinen, H (2005). "Brain event-related potentials (ERPs) measured at birth predict later language development in children with and without familial risk for dyslexia". Korteks. 41 (3): 291–303. doi:10.1016/S0010-9452(08)70267-3. PMID  15871595.
  30. ^ Pinker, S; Jackendoff, R (2005). "The faculty of language: what's special about it?". Idrok. 95 (2): 201–236. CiteSeerX  10.1.1.494.2923. doi:10.1016/j.cognition.2004.08.004. PMID  15694646.
  31. ^ Catts, HW; Fey, ME; Chjan, X; Tomblin, JB (1999). "O'qish va o'qishdagi nogironlikning til asoslari: uzunlamasına tekshiruvdan olingan dalillar". O'qishning ilmiy tadqiqotlari. 3 (4): 331–361. doi:10.1207 / s1532799xssr0304_2.
  32. ^ a b Bercow, J (2008). "The Bercow Report. A Review of Services for Children and Young People (0–19) With Speech, Language and Communications Needs". Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  33. ^ Tomblin, JB; Chjan, X; Buckwalter, P; O'Brayen, M (2003). "The stability of primary language disorder: Four years after kindergarten diagnosis". Nutq, til va eshitish tadqiqotlari jurnali. 46 (6): 1283–1296. doi:10.1044/1092-4388(2003/100). PMID  14700355.
  34. ^ Catts, HW (1993). "The relationship between speech-language impairments and reading disabilities". Nutq va eshitish tadqiqotlari jurnali. 36 (5): 948–58. doi:10.1044/jshr.3605.948. PMID  8246483.
  35. ^ Donlan, C; Cowan, R; Newton, EJ; Lloyd, D (2007). "The role of language in mathematical development: Evidence from children with specific language impairments". Idrok. 103 (1): 23–33. doi:10.1016/j.cognition.2006.02.007. PMID  16581052.
  36. ^ Dockrell, JE; Lindsay, G (2001). "Children with Specific Speech and Language Difficulties—the teachers perspective". Ta'lim bo'yicha Oksford sharhi. 27 (3): 369–394. doi:10.1080/03054980125168.
  37. ^ Kuhl, P; Rivera-Gaxiola, M (2008). "Neural substrates of language acquisition" (PDF). Nevrologiyani yillik sharhi. 31: 511–534. doi:10.1146/annurev.neuro.30.051606.094321. PMID  18558865.
  38. ^ McArthur, GM; Ellis, D; Atkinson, CM; Coltheart, M (2008). "Auditory processing deficits in children with reading and language impairments: Can they (and should they) be treated?". Idrok. 107 (3): 946–977. doi:10.1016/j.cognition.2007.12.005. PMID  18262177.
  39. ^ Tomblin, JB; Zhang, X (2006). "The dimensionality of language ability in school-age children". Nutq, til va eshitish tadqiqotlari jurnali. 49 (6): 1193–1208. doi:10.1044/1092-4388(2006/086). PMID  17197490.
  40. ^ Fonteneau, E; van der Lely, HKJ; Pinker, Steven (2008). Pinker, Steven (ed.). "Electrical Brain Responses in Language-Impaired Children Reveal Grammar-Specific Deficits". PLOS ONE. 3 (3): e1832. Bibcode:2008PLoSO...3.1832F. doi:10.1371/journal.pone.0001832. PMC  2268250. PMID  18347740. ochiq kirish
  41. ^ Parsons, S; Bynner, J (2005). "Does numeracy matter more?". National Research and Development Centre for Adult Literacy and Numeracy, Institute of Education, UK. Arxivlandi asl nusxasi 2011-09-29 kunlari. Olingan 2010-08-06. Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  42. ^ Ansari, D; Karmiloff-Smith, A (2002). "Atypical trajectories of number development: a neuroconstructivist perspective". Kognitiv fanlarning tendentsiyalari. 6 (12): 511–516. doi:10.1016/S1364-6613(02)02040-5. PMID  12475711.
  43. ^ a b Dehaene, S; Piazza, M; Pinel, P; Cohen, L (2003). "Three parietal circuits for number processing" (PDF). Kognitiv neyropsixologiya. 20 (3–6): 487–506. CiteSeerX  10.1.1.4.8178. doi:10.1080/02643290244000239. PMID  20957581.
  44. ^ Kastelli, F; Glaser, DE; Butterworth, B (2006). "Discrete and analogue quantity processing in the parietal lobe: A functional MRI study". AQSh Milliy Fanlar Akademiyasi materiallari. 103 (12): 4693–4698. Bibcode:2006PNAS..103.4693C. doi:10.1073/pnas.0600444103. PMC  1450233. PMID  16537401.
  45. ^ Landerl, K; Bevan, A; Butterworth, B (2004). "Rivojlanish diskalkulyatsiyasi va asosiy raqamli imkoniyatlar: 8-9 yoshli o'quvchilarni o'rganish". Idrok. 93 (2): 99–125. CiteSeerX  10.1.1.123.8504. doi:10.1016/j.cognition.2003.11.004. PMID  15147931.
  46. ^ Alarcon, M; DeFries, JC; Light, JG; Pennington, BF (1997). "A twin study of mathematics disability". O'quv qobiliyatining buzilishi jurnali. 30 (6): 617–623. doi:10.1177/002221949703000605. PMID  9364899.
  47. ^ Shalev, RS; Manor, O; Kerem, B; Ayali, M; Badichi, N; Friedlander, Y; Gross-Tsur, V (2001). "Developmental dyscalculia is a familial learning disability". O'quv qobiliyatining buzilishi jurnali. 34 (1): 59–65. doi:10.1177/002221940103400105. PMID  15497272.
  48. ^ Mazzocco, MMM; McCloskey, M (2005). "Math performance in girls with Turner or fragile X syndrome". In Campbell, JID (ed.). Handbook of Mathematical Cognition. Psixologiya matbuoti. 269-297 betlar. ISBN  978-1-84169-411-5.
  49. ^ Beddington, J; Cooper, CL; Maydon, J; Goswami, U; Huppert, FA; Jenkins, R; Jones, HS; Kirkwood, TBL; Sakakian, BJ; Thomas, SM (2008). "Xalqlarning aqliy boyligi" (PDF). Tabiat. 455 (7216): 1057–1060. Bibcode:2008Natur.455.1057B. doi:10.1038 / 4551057a. PMID  18948946.
  50. ^ Dehaene, S; Dehaene-Lambertz, G; Cohen, L (1998). "Abstract representations of numbers in the animal and human brain" (PDF). Nörobilimlerin tendentsiyalari. 21 (8): 355–361. doi:10.1016/S0166-2236(98)01263-6. PMID  9720604.
  51. ^ Temple, E; Posner, MI (1998). "Brain mechanisms of quantity are similar in 5-year-old children and adults". AQSh Milliy Fanlar Akademiyasi materiallari. 95 (13): 7836–7841. Bibcode:1998PNAS...95.7836T. doi:10.1073/pnas.95.13.7836. PMC  22775. PMID  9636237.
  52. ^ Ansari, D; Garcia, N; Lucas, E; Hamon, K; Dhital, B (2005). "Neural correlates of symbolic number processing in children and adults". NeuroReport. 16 (16): 1769–1773. doi:10.1097/01.wnr.0000183905.23396.f1. PMID  16237324.
  53. ^ Dehaene, S; Spelke, E; Pinel, P; Stanescu, R; Tsivkin, S (1999). "Sources of mathematical thinking: behavioral and brain-imaging evidence" (PDF). Ilm-fan. 284 (5416): 970–974. Bibcode:1999Sci ... 284..970D. doi:10.1126 / science.284.5416.970. PMID  10320379.
  54. ^ Zago, L; Pesenti, M; Mellet, E; Crivello, F; Mazoyer, B; Tzourio-Mazoyer, N (2001). "Neural correlates of simple and complex mental calculation". NeuroImage. 13 (2): 314–327. CiteSeerX  10.1.1.420.2126. doi:10.1006/nimg.2000.0697. PMID  11162272.
  55. ^ a b Kucian, K; Loenneker, T; Dietrich, T; Dosch, M; Martin, E; von Aster, M (2006). "Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study". Xulq-atvor va miya funktsiyalari. 2 (1): 31. doi:10.1186/1744-9081-2-31. PMC  1574332. PMID  16953876.
  56. ^ Salovey, P. and D.J. Sluyter, Emotional development and emotional intelligence: Educational implications. 1997: Basic Books.
  57. ^ Goleman, D., Emotional intelligence. Nyu-York, 1995 yil.
  58. ^ Petrides, K.V., N. Frederickson, and A. Furnham, The role of trait emotional intelligence in academic performance and deviant behavior at school. Personality and individual differences, 2004. 36(2): p. 277-293.
  59. ^ Appleby, L., S. Shribman, and N. Eisenstadt, Promoting the mental health and psychological wellbeing of children and young people. Report on the Implementation of Standard, 2006. 9.
  60. ^ Herba, C. and M. Phillips, Annotation: Development of facial expression recognition from childhood to adolescence: Behavioural and neurological perspectives. Journal of Child Psychology and Psychiatry, 2004. 45(7): p. 1185-1198.
  61. ^ McClure, E.B., A meta-analytic review of sex differences in facial expression processing and their development in infants, children, and adolescents. Psychological Bulletin, 2000. 126(3): p. 424-453.
  62. ^ Anderson, S.W., et al., Impairment of social and moral behavior related to early damage in human prefrontal cortex. Foundations of Social Neuroscience, 2002: p. 333–343.
  63. ^ Damasio, A.R., The neurobiological grounding of human values. Changeux JP, et al (ed) Neurobiology of human values, in Neurobiology of human values J.P. Changeux, et al., Editors. 2005, London: Springer-Verlag. p. 47-56.
  64. ^ Immordino-Yang, M.H. and A. Damasio, We feel, therefore we learn: The relevance of affective and social neuroscience to education. Mind, Brain, and Education, 2007. 1(1): p. 3-10.
  65. ^ Decety, J. and M. Meyer, From emotion resonance to empathic understanding: A social developmental neuroscience account. Development and Psychopathology, 2008. 20(04): p. 1053-1080.
  66. ^ Silani, G., et al., The neurophysiological bases of inner emotional experience in autism spectrum disorders: an fMRI investigation. Social Neuroscience, 2008. 3(2): p. 97-112.
  67. ^ Lenroot, R.K. va J.N. Giedd, Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Reviews, 2006. 30(6): p. 718-729.
  68. ^ Jones, A.P., et al., Amygdala hypoactivity to fearful faces in boys with conduct problems and callous-unemotional traits. American Journal of Psychiatry, 2009. 166(1): p. 95.
  69. ^ Blakemore, S.J., The social brain in adolescence. Nature Reviews Neuroscience, 2008. 9(4): p. 267-277.
  70. ^ Ronald, A., et al., Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. Journal of Child Psychology and Psychiatry, 2008. 49(5): p. 535-542.
  71. ^ Holmboe, K. and M.H. Johnson, Educating executive attention. 2005, National Acad Sciences. p. 14479-14480.
  72. ^ Kirkham, N.Z. and A. Diamond, Sorting between theories of perseveration: performance in conflict tasks requires memory, attention and inhibition. Developmental Science, 2003. 6(5): p. 474-476.
  73. ^ Diamond, A., et al., Preschool program improves cognitive control. Science, 2007. 318(5855): p. 1387-1388.
  74. ^ Blair, C. and A. Diamond, Biological processes in prevention and intervention: The promotion of self-regulation as a means of preventing school failure. Development and psychopathology, 2008. 20(03): p. 899-911.
  75. ^ Blakemor, S.J. and S. Choudhury, Development of the adolescent brain: implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 2006. 47(3–4): p. 296-312.
  76. ^ Hirsch, E.D., The schools we need and why we don't have them. 1996: Doubleday Books.
  77. ^ Begley, S., Your child's brain. NEWSWEEK-AMERICAN EDITION-, 1996. 127: p. 54-57.
  78. ^ Willingham, D.T. and J.W. Lloyd, How educational theories can use neuroscientific data. Journal Compilation. 1(3): p. 140-149.
  79. ^ Heim S, Tschierse J, Amunts K (2008). "Disleksiyaning kognitiv kichik turlari". Acta Neurobiologiae Experimentalis. 68 (1): 73–82. ISSN  0065-1400. PMID  18389017.
  80. ^ Shaywitz, B.A., G.R. Lyon, and S.E. Shaywitz, The role of functional magnetic resonance imaging in understanding reading and dyslexia. Developmental Neuropsychology, 2006. 30(1): p. 613-632.
  81. ^ Palmer, E.D., et al., Investigation of the functional neuroanatomy of single word reading and its development. Scientific Studies of Reading, 2004. 8(3): p. 203-223.
  82. ^ Caplan, D., Functional neuroimaging studies of written sentence comprehension. Scientific Studies of Reading, 2004. 8(3): p. 225-240.
  83. ^ Varma, S., B.D. McCandliss, and D.L. Schwartz, Scientific and pragmatic challenges for bridging education and neuroscience. Educational Researcher, 2008. 37(3): p. 140.
  84. ^ Delazer, M., et al., Learning by strategies and learning by drill—evidence from an fMRI study. Neuroimage, 2005. 25(3): p. 838-49.
  85. ^ Tang, Y., et al., Arithmetic processing in the brain shaped by cultures. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(28): p. 10775-80.
  86. ^ Eden, G.F., et al., Neural changes following remediation in adult developmental dyslexia. Neuron, 2004. 44(3): p. 411-22.
  87. ^ Cacioppo, J.T. va G.G. Berntson (1992). "Social psychological contributions to the decade of the brain. Doctrine of multilevel analysis" (PDF). Amerikalik psixolog. 47 (8): 1019–28. doi:10.1037/0003-066x.47.8.1019. PMID  1510329. Arxivlandi asl nusxasi (PDF) 2015-02-26 da. Olingan 2015-12-28.CS1 maint: mualliflar parametridan foydalanadi (havola)
  88. ^ Strauss, V., Starting where science meets education., in Washington Post. 2002 yil.
  89. ^ Greenwood, R., Where are the educators? What is our role in the debate? Cortex, 2009. 45: p. 552-554.
  90. ^ Sheridan, K., E. Zinchenko, and H. Gardner, Neuroethics in Education. Unpublished Manuscript, 2005
  91. ^ Byrnes, J.P. and N.A. Fox, The educational relevance of research in cognitive neuroscience. Ta'lim psixologiyasini ko'rib chiqish, 1998. 10(3): p. 297-342.
  92. ^ Bennett, B.B. and N.C. Rolheiser-Bennett, Beyond Monet: The artful science of instructional integration. 2001: Bookation.
  93. ^ OECD, Understanding the Brain: Towards a New Learning Science, OECD, Editor. 2002 yil.
  94. ^ Vizel, T.N. and D.H.Hubel, mushukchalarda vizual mahrumlik ta'siridan xalos bo'lish ko'lami. Neyrofiziologiya jurnali, 1965. 28 (6): p. 1060-1072.
  95. ^ Kuhl, P.K., Nutq va tilda o'rganish va vakillik. Neyrobiologiyada dolzarb fikr, 1994. 4 (6): p. 812.
  96. ^ a b Greenough, W.T., J.E. Black va C.S. Wallace, Tajriba va miyaning rivojlanishi. Bola taraqqiyoti, 1987. 58 (3): p. 539-559.
  97. ^ Pantev, C. va boshq., Musiqachilarda eshitish kortikal vakolatining kuchayishi. Tabiat, 1998. 392: p. 811-814.
  98. ^ Elbert, T., va boshq., String pleyerlarida chap qo'l barmoqlarining kortikal vakolatini oshirish. Fan, 1995. 270 (5234): p. 305.
  99. ^ Maguire, E.A. va boshq., Taksi haydovchilarining hipokampilaridagi navigatsiyaga bog'liq tarkibiy o'zgarish. Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari, 2000. 97 (8): p. 4398-403.
  100. ^ Goldman-Rakich, P.S. (1987). "Kortikal sxema va kognitiv funktsiyalarni rivojlantirish". Bolalarni rivojlantirish. 58 (3): 601–622. doi:10.1111 / j.1467-8624.1987.tb01404.x.
  101. ^ Baron-Koen, S., Asosiy farq: Erkaklar, ayollar va o'ta erkak miyasi. 2003 yil: Allen Leyn.
  102. ^ Pashler, Garold; McDaniel, Mark; Roher, Dag; va Byork, Robert (2008). "Ta'lim uslublari: tushuncha va dalillar". Jamiyat manfaatlaridagi psixologik fan. 9 (3): 105–119. CiteSeerX  10.1.1.694.7021. doi:10.1111 / j.1539-6053.2009.01038.x. PMID  26162104.CS1 maint: mualliflar parametridan foydalanadi (havola)
  103. ^ Rorr, Dag va Pashler, Garold (2012). "O'quv uslublari: dalil qaerda?". Tibbiy ta'lim. 46 (7): 634–635. doi:10.1111 / j.1365-2923.2012.04273.x. PMID  22691144.CS1 maint: mualliflar parametridan foydalanadi (havola)
  104. ^ a b Nyuton, Filipp M. (2015). "O'qish uslublari haqidagi afsona oliy ma'lumotda rivojlanib bormoqda". Psixologiyadagi chegaralar. 6: 1908. doi:10.3389 / fpsyg.2015.01908. PMC  4678182. PMID  26696947.
  105. ^ Dekker, Sanne; va boshq. (2012). "Ta'limdagi neyromitlar: o'qituvchilar orasida noto'g'ri tushunchalarning tarqalishi va bashorat etuvchilari". Psixologiyadagi chegaralar. 3: 429. doi:10.3389 / fpsyg.2012.00429. PMC  3475349. PMID  23087664.

Qo'shimcha o'qish

Tashqi havolalar

Hukumat tashabbuslari

Konferentsiyalar va tashkilotlar

Nashrlar